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Abstract
The task of designing effective economic and political institutions requires substantial
foresight. The designer must anticipate not only the behavior of individual actors, but
also how that behavior will aggregate. Rising complexity brought about by increases in
speeds of adaptation, diversity, connectedness, and interdependence make institutional
design all the more challenging. Given the focus on equilibria, the extant literature on
mechanism design might appear incapable of coping with this complexity. Yet, I suggest
that a deeper engagement with the origins of the mechanism-design framework reveals
insights that may help us design robust, adaptive institutions that can harness complexity.
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1. Introduction

Our world increases in complexity with each passing day. Whether one studies national

economies, global politics, or civic cultures, one notices that actions have become more

interdependent, economies and people more connected, the relevant actors more diverse,

and the rate of adaptation greater. On just this last point, when you walk into a modern

grocery store and buy a carton of milk, your actions tip off a web of intelligent software

that updates inventories and, if necessary, phones the cow. The rate of change in the
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economy alone has increased to such a point that leading consultants quantify not just the

state and direction of the economy, but also its acceleration (Hagel et al., 2009).

In this article, I contemplate the implications of increasing complexity for the prob-

lem of institutional and mechanism design. In particular, I ask whether and how we

should take complexity into account when constructing economic, political, and social

institutions. At its core, design requires foresight. The designer must anticipate responses

and outcomes. Thus, the existence of complexity creates a problem for design: by def-

inition, complex systems are difficult to predict (Page, 2010). Thus, as the world

becomes more complex, even the best efforts of the sharpest minds cannot make accurate

long-term forecasts (Jervis, 1998; Orrell, 2007; Tetlock, 2006; Watts, 2011).1 Neverthe-

less, I will argue, we can still predict some characteristics of outputs, and some institu-

tions may create more predictable outcomes than others, provided they are designed with

an understanding of the causes of complexity.

As an organizing framework, I rely on an extensive literature devoted to mechanism

design (Maskin, 2007). The mechanism-design literature characterizes an economic or

political institution as consisting of six parts: an environment, a message space, a space

of outcomes, a response function (or behavioral rule) for individuals, an outcome function

that maps behaviors into the space of outcomes, and a social choice correspondence: a set

of idealized outcomes given the environment. This analytic framework proves sufficiently

general to encompass most institutional settings, including exchange economies, networks

of banks, and legislative bodies. It can also help to organize our thinking about how com-

plexity arises, why complexity matters, and what we might do to harness complexity for

our betterment (Axelrod and Cohen, 2000; Beinhocker, 2006).

Mechanism design and complexity theory might at first appear incommensurable.

The former focuses on the equilibria of systems. The standard mechanism-design per-

spective on institutions can be summed up as follows: institutions produce equilibria;

better institutions produce better equilibria. A complexity perspective, while not deny-

ing equilibria, admits other classes of phenomena, such as cycles, randomness, and

complex dynamics, that can produce large events such as stock-market crashes and the

collapse of markets.

One of my challenges, then, will be to describe how the mechanism-design approach

can be modified to embrace complexity. This will not require ‘round holing’ a square

peg. In fact, it is more of a return to the origins of mechanism design, or what Hurwicz

called adjustment processes. Adjustment processes can produce both equilibria and

complexity (Hurwicz, 1994). To give away a bit of the plot, mechanism design, as cur-

rently practiced, assumes that agents optimize. Adjustment-process models assume

that individuals follow rules. They consider how and whether those rules lead to equi-

libria. For example, in Fisher’s seminal model of price adjustment without an auction-

eer (1972), buyers sample a fixed, random sample of sellers. Such behavior could not

possibly be optimal, but it suffices to get to equilibrium. Complex systems models can

lie in between, with agents relying on simple rules, but adapting those rules over time.

This adaptation will be one of the building blocks needed for a mechanism to allow

for complexity.

The remainder of this article consists of four parts. In the first, I provide a brief over-

view of the components of a complex adaptive system and describe the phenomena
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produced by such systems (Miller and Page, 2008; Mitchell, 2009). In the second part,

I provide a primer on mechanism design. By juxtaposing these two theoretical frame-

works, I intend not to make any normative comparison, but to highlight core assumptions

of each approach to thinking about the world. In part three, I describe how to extend

mechanism design to include the core assumptions of complexity theory. Finally, in part

four, I discuss what we might learn about how to design better institutions by integrating

ideas from complexity into mechanism design.

2. Complex adaptive systems: attributes and outputs

I begin with a brief overview of complexity and what many call ‘complex adaptive sys-

tems’. I distinguish between the attributes of a complex system and the phenomena, or

outputs, that such systems produce. The attributes of a complex system include diverse

agents, that are connected either virtually or geographically, who follow adaptive, rule-

based behaviors, and whose choices are interdependent in meaningful and often non-

linear ways (Holland, 1995, 1998).

Two points are in order. First, a system that has these attributes can, but need not, pro-

duce complex outcomes. Therefore, we might more accurately refer to them as ‘complex

(capable) systems’. Clearly, an economy possesses all of the attributes of a system capable

of producing complexity, but not all of the outcomes in an economy are complex. Second,

systems that lack these attributes tend not to produce complexity. Thus, the toy models used

to teach economics do not produce complexity because they lack the necessary attributes.

I do not intend the previous sentence as a criticism, but as a statement of fact. By cre-

ating models that lack, say, diversity or adaptation, economists obtain well-behaved out-

comes allowing them to formulate clean hypotheses and make coherent forecasts and

policy recommendations.2 They can also design optimal institutions. But that optimality

applies only in a limited context.

When I say that a system produces complexity, that still leaves open the question of

what exactly complexity is. Complexity has an abundance of definitions – at least 20.

Surveys of the literature distinguish between classes of definitions of complexity

(Mitchell, 2009). In a recent book (Page, 2010), I suggest that these many definitions

fall into the following two broad categories.

BOAR. Complexity lies between order and randomness.

DEEP. Complexity cannot be easily described, evolved, engineered, or predicted.

BOAR and DEEP are more similar than they might appear. BOAR places complexity

between ordered and random. Ordered systems are not DEEP. They can be described,

engineered, and predicted. Often, they can be evolved as well. Random processes are

also easily described and engineered, and if stationary, easily predicted (at least at the

distribution level). In contrast, a complex process cannot be described in just a few

words, nor be predicted accurately. Thus, what lies between order and randomness will

tend to be DEEP.

Although these definitions do not provide a clean test for complexity, they do roughly

agree on what systems they call complex. But they also differ in their particulars. One
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process may be more ordered than another, but harder to evolve if that order results from

elaborate feedback structures. Moreover, that difference may be a strength. Complexity,

by definition, implies high information content. Thus, for many of the same reasons that

anthropologists have created hundreds of definitions of culture, we also want an abun-

dance of definitions of complexity.

At this point, it is worth commenting on whether the empirical evidence for complex-

ity can be documented using these measures.3 Time series of GDP, housing prices, or

aggregate stock returns suggest complexity exists. That said, the patterns that we see

in those data are not the elaborate structured patterns of the kind that result from the fixed

rules shown in Wolfram (2002). That lack of structure emerges because any predictable

pattern could be exploited for gain. Some patterns though, such as the clustered volatility

of stock-market prices, cannot be exploited, or at least cannot be exploited easily. As a

result, complexity scholars view the clustered volatility as evidence of complexity.

Stock-market returns also exhibit fat tails (Mandelbrot, 1963). These large movements

in prices suggest interdependent behavior, another characteristic of complex systems.

Some would call these fluctuations evidence of market uncertainty and not complex-

ity. I do not see this as mere semantics. Uncertainty is not the same thing as complexity.4

Uncertainty refers to a lack of information about the state of the world. Complexity arises

from interactions between diverse actors with interdependent behaviors who adapt to one

another (Miller and Page, 2008).

2.1 Complexity, but not always

I next reiterate a distinction between the attributes that define systems capable of produc-

ing complexity and the complex outcomes themselves. As mentioned earlier, just

because a system has diverse, interacting agents does not mean that it produces complex

outcomes. It could be that the system can be explained by a few macro-level variables.

For example, many complex systems models of the economy take agents as the primitive

and then explore how their actions aggregate (Tefatsion, 2006). These models need not

produce complex outcomes. They can produce efficient equilibria. Economics has a long

history of demonstrating how interactions can produce simplicity (Hayek, 1945). More

recent experimental and computational work unpacks exactly how market mechanisms

produce equilibria despite complex underpinnings (Dickhaut et al., 2010; Gode and

Sunder, 1993).

In all these cases, aggregation reduces complexity. Thus, as a prelude to my discus-

sion of mechanisms, I want to spend a moment on aggregation. To organize this discus-

sion, I construct an aggregation operator A that maps the vector of the agents’ states at

time t into an aggregate variable Y t or vector of variables ~Y t. I also define an aggregate-

level mapping H that transforms the aggregate variable at time t to its state at time t þ 1

(see Figure 1).5

Consider a macroeconomic model of the economy. It focuses on the aggregates (the

top row of Figure 1), ignoring the lower level. Even though, in reality, the economy con-

sists of many individual agents all interacting, macro models ignore them. In other

words, the model assumes that the particulars do not matter. Stated mathematically, this
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means that the diagram commutes, that is, H ½Aðxt
1; x

t
2; . . . xt

nÞ� ¼ A½Fðxt
1; x

t
2; . . . xt

nÞ�.
Isawa et al. (1987) provide conditions for that to be the case.6

One way to make the diagram commute is to make all agents identical. In that setting,

all of the xi’s will take on the same value and Figure 1 is more likely to commute. How-

ever, we also need that the system has limited interdependency among the agents. The

centrality of interdependence to complexity will be a consistent theme in this article,

so it is worth unpacking.

I will contrast two examples, one formal and one informal. The first will be a standard

model of consumer demand for a single good. In that model, the primitives will be the

agents’ preferences and incomes. Assume that agents’ preferences are such that they

spend a fixed proportion of their income on the good. Let xt
i denote the income of agent

i at time t and let the demand of agent i0 for the product equal ai þ bxt
i. The function that

describes aggregate states can then be written as Fðxt
1; x

t
2; . . . xt

nÞ ¼ ðxt
1 þ 1; xt

2 þ
1; . . . xn

t þ 1Þ. Let Y t denote aggregate income, that is, the sum of the agents’ incomes.

A straightforward calculation shows that Figure 1 commutes. Let

Að~x1
t;~x2

t; ::~xn
tÞ ¼

Xn

i¼1
~xi

t

and

HðY tÞ ¼ Y t þ n

It follows that HðY tÞ ¼ A½Fð~x1
t;~x2

t; ::~xn
tÞ�. To calculate the sum of the agents’ demands,

we can use either the agent-based model or the aggregate model. In the former case, we

just sum the individual demands of the agents. In the latter case, aggregate demand in

time t equals A þ bY t, where

A ¼
Xn

i¼1
ai

In this example, agents spend a fixed proportion of their income on the product. There-

fore, the entire population of agents also spends a fixed proportion of its income on the

good, and, as a result, the aggregate model works perfectly. This condition (that is, iden-

tical proportional behavior across agents) implies almost no interactions, and therefore

aggregation works. Implicit in this construction was the idea that agents optimize

Figure 1. The aggregation diagram

Page 9

 by guest on September 11, 2016ppe.sagepub.comDownloaded from 

http://ppe.sagepub.com/


effortlessly, and that reduces the potential for complexity. Microeconomic models of

exchange economies with well-behaved preferences such as described here will tend

to produce some complexity as agents learn effective trading rules over time (Gintis,

2007). From this example, we learn that exchange economies have few interdependen-

cies, and, as a result, they are not likely to be complex.

For my second example, I consider financial markets. In a financial market, a person’s

value of a good depends on what other people think about the value of that good as well

(LeBaron, 2001, 2006). A bundle of mortgages could be worth a lot of money if everyone

else thinks the mortgages will be paid off and could be worth nothing if people think that

they will not be paid off. In a summary of financial folly spanning centuries, Reinhart

and Rogoff (2009) show, among other results, that leverage ratios need not be a good

predictor of impending doom. Markets can be highly leveraged yet remain stable. They

also can be highly leveraged and on the brink of collapse. Market prices depend on peo-

ple’s opinions, and those can move around in response to information and the actions of

others. The result is that financial markets produce complex outcomes, including

sequences of temporary patterns and occasional large events (Bak, 1996) such as the

1987 crash or the more recent home mortgage crises. In sum then, systems with lots

of interdependencies and diversity may not aggregate as easily as those that do not. This

makes constructing accurate simple models difficult, if not impossible. I now turn to

what this implies for mechanism design.

3. Mechanism design

Recall from the introduction that a mechanism consists of six parts: an environment, a

message space, a response function (g), an outcome function (h), a space of outcomes,

and a social choice function correspondence (F). Figure 2, known as the Mount-

Reiter diagram, shows the relationships between the six parts.

The environment resides in the upper left of the Mount-Reiter diagram. The environ-

ment consists of all relevant information for the mechanism. For the purposes of this arti-

cle, I will assume a set of agents each having a type �i that captures everything relevant

about the agent. The type will encompass preferences, information sets, and beliefs. If

the agent represents a firm, then its type includes the production technologies available

to the firm. The entire profile of types ~� ¼ ð�1; �2; . . . �nÞ constitutes what will be called

the ‘environment’.

The message space lies at the bottom of the diagram. The message space characterizes

the language that the agents use to communicate with one another. In a market, messages

could be quantity demands for products or they could be price demands to sell a unit of a

good. In a political system, messages could be votes. Designing the message space is one

of the tasks confronting the designer of a mechanism.

The other task for the designer is to understand the agents’ response function, denoted

by g. This function describes how agents map their types into messages. For example, in

an exchange economy types might represent initial endowments and messages might

represent requested trades. In that setting, the response function could be a requested

trade, say, four apples for three bananas.
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The messages sent depend on incentives. Those incentives are determined by the

outcome function, h. The art of mechanism design lies in constructing outcome functions

that induce agents to send the right messages. The function maps those messages into

outcomes: allocations of goods, electoral outcomes, and so on. So far, my description

of a mechanism ignores normative aspects of the outcomes produced. The final piece

of a mechanism, the social choice function or correspondence (denoted by F), adds a

normative dimension.

This distinction between functions and correspondences has important consequences.

A social choice function is a one-to-one mapping from type profiles to outcomes. For

each environment, it prescribes a unique outcome. A social choice correspondence does

not prescribe a single outcome, but many. Mathematically, a correspondence is a one-to-

many mapping from type profiles to outcomes.

Some examples show why this distinction plays such a central role in mechanism

design. If types represent preferences over a ballot proposition and outcomes must be

either yea or nay, then we might want to assign, for each profile, the outcome preferred

by a majority. If so, we would be constructing a social choice function. For each pre-

ference profile, we are choosing a single outcome. On the other hand, if types represent

preferences over goods and initial allocations of goods and if outcomes represent allo-

cations, then we might only desire Pareto-efficient allocations. If so, for each profile of

types, there would exist multiple desired outcomes, and we would assume a social

choice correspondence.

If we take a complexity perspective, the social choice correspondence can be seen

even more expansively. We might want outcomes in a single period to belong to a set,

but we might also want the path of outcomes to belong to a set of paths that represent a

flourishing economy. For example, in designing financial markets, we might want out-

come paths that do not produce large bubbles and crashes.

Of course, the space between desires and reality can be a chasm. Therein lies the

strength of the Mount-Reiter diagram. It graphically captures the fundamental problem

of design: the tension between the clean, crisp normative ideal and the messier, some-

times grim reality. Across the top, the social choice correspondence F describes the

Figure 2. The Mount-Reiter diagram
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heights to which we aspire. Down below, individuals respond to their perceptions of

reality through g and the outcome function h adjudicates the competing claims of mes-

sages captured in m. In a perfect world, the diagram would commute. Reality would pro-

duce the ideal. Often though, that proves impossible, and no mechanism proves capable

of implementing the correspondence F.

3.1. Realization versus implementation of outcomes

A breakthrough in mechanism design occurred when social scientists discovered that

given an outcome function, an environment, and a message space, a mechanism created

a game in which the messages can be thought of as actions and the outcome function

renamed a ‘payoff function’. Given that formulation, the outcome of a mechanism can

be captured as an equilibrium of the game. If an equilibrium of the game lies within the

correspondence F, then the mechanism implements the social choice correspondence F

(Reiter, 1977).

During the past 25 years, implementation has been the standard approach in mechan-

ism design – to solve for equilibria. Thus, given a mechanism, one can restrict attention

to the equilibria the mechanism implements. This leaves open the question of what can

be implemented. Given the vast space of possible mechanisms, this question would seem

unanswerable. Fortunately, progress has been made on this question. Maskin (2007)

showed the necessity of the monotonicity of the social choice function. Monotonicity

implies that if outcome A is chosen in one environment and A does not become less

attractive for anyone in a new environment, then A must still be chosen.

A second breakthrough was the development of the Revelation Principle (Myerson,

1992). The Revelation Principle states that any equilibrium implemented by a mechan-

ism can also be implemented by a direct revelation mechanism, that is, a mechanism in

which the message space equals the type space. A direct revelation mechanism is said to

be incentive compatible if the truthful revelation of types is a Nash equilibrium. This

means that if all other agents truthfully reveal their types, then agent i should also truth-

fully reveal her type. Note that this does not preclude other equilibria in which agents

misrepresent their types. The mechanism could induce many such equilibria.7

Now, most of mechanism design considers Nash equilibria, but that was not always

true. Hurwicz (1994) originally described what he called adjustment processes. Under an

adjustment process, the response functions are behavioral rules characterized as algo-

rithms. As an example, consider a two-agent pure exchange economy. The behavioral

rule for one agent could be to use a randomizing device to produce potential trades and

to propose the first trade that he prefers to the status quo, and the behavioral rule for the

other agent could be to accept any proposed trade that she prefers to the status quo. These

behavioral rules produce a sequence of allocations in which both agents’ utilities weakly

increase. However, these rules are not optimal because the second agent might not want

to accept a trade that she only prefers over the status quo by a small amount, especially if

she believes that this trade would greatly benefit the first agent. Accepting such a trade

might harm the second agent’s future position.

The outcome that would result from the repeated application of these behavioral rules

is said to be realized by the mechanism. This distinction between implemented
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(equilibrium) outcomes and realized outcomes will be central to the analysis that

follows. Within economics and political science, implementation has become the stan-

dard approach. In simpler language, this means that the rationality assumption has

reigned. Why? There are many reasons. Rationality makes a good benchmark (Myerson,

1992). Furthermore, any other behavioral assumption can be criticized as both ad hoc

and inconsistent with the idea that individuals keep improving their actions. If an agent

can improve her lot by deviating from a fixed behavioral rule, why would she not do so?

Two changes in perspective have begun to call into question rationality as a bench-

mark. Experimental and behavioral economics have raised empirical challenges to

whether people optimize. Many studies suggest, instead, that people exhibit common

biases (Camerer, 2003). Complementing the increased attention to actual, not idealized

behavior has been a recognition of the difficulty of some choice contexts and the com-

plexity of some environments. Difficult problems consist of many variables that inter-

act in nonlinear ways (Page, 2008). In difficult and complex environments, the

optimization assumption becomes problematic because of computational constraints.

Some of the most interesting work in experimental mechanism design has explored

how people perform when the environments are more complex (Brunner et al.,

2010; Ledyard et al., 1997).

3.2. Informational and computational requirements

Notice that direct revelation mechanisms remove much of the actual mechanism from

the analysis. To see why, consider an exchange economy in which an agent’s type would

be her endowment and her preferences. In the austere world of blackboard economics,

preferences might be a simple vector of parameters, but in the real world preferences

might be rather high-dimensional objects. In a direct revelation mechanism, these objects

would have to be communicated to an outcome function which would then describe the

trades between the agents. Framed this way, the direct revelation mechanism can be

thought of as centrally planned exchange. People send all of the relevant information

to a central source, which then informs them of their trades.

Contrast this with a price mechanism. A price mechanism would create one agent, a

Walrasian auctioneer, who announces a set of prices. The other agents could then com-

municate their demands for the various goods by sending their ideal vectors of goods.

These vectors must cost the same as the agents’ endowments given the price vector.

Note that revelation of an ideal vector of goods would not be equilibrium behavior –

agents could benefit by being more strategic (more on that in a moment). For now,

focus only the informational efficiency of the market – How long are the messages that

agents send? In a market, the agents send much less information than they do in a cen-

trally planned economy.

This question (that is, the derivation of minimal dimensional message spaces) ani-

mated much of the early research in mechanism design. Jordan (1982) showed that a

market-like mechanism realized (not implemented) the Walrasian correspondence with

the fewest possible dimensions – the idea being that the dimension of the message space

is a proxy for informational cost. Reichelstein and Reiter (1988) proved that a slight

modification of a market mechanism implemented the Walrasian correspondence in
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minimal dimensions. Both of these results precluded the use of dimension-reducing

encodings. These results imply that market-like mechanisms improve on central plan-

ning not because of the outcomes they generate, but because of the informational effi-

ciency with which they generate those outcomes.

The focus on the dimensionality of messages leaves out the amount of computation

required of the agents.8 If one mechanism uses lower dimensional messages than

another, but requires more onerous computations, is it really more efficient? It is exactly

this question that Mount and Reiter (2002) consider by constructing a model that

assumes a set of primitive computations. Loosely speaking, they calculate the computa-

tional costs of a mechanism as the number of primitive computations required by the

response functions. This construction enables them to derive an efficient frontier of

mechanisms. A mechanism lies on this frontier if no other mechanism both has a lower

dimensional message space and requires less computation.

3.3. Dominated and unbounded strategies and robust mechanisms

The computational approach of Mount and Reiter captures the difficulty of calculating the

equilibrium message, but it does not address the difficulty of coordinating on or selecting

the equilibrium. It restricts attention to the direct computation of the equilibrium and

ignores the cognitive costs involved in choosing which equilibrium to compute. This sec-

ond aspect of computation proves challenging to quantify. As a rule, mechanism designers

prefer implementation in dominant strategies which obviates the problem of equilibrium

selection. However, implementation in dominant strategies often fails.

Designers also prefer not to use mechanisms that include undominated strategies

(Jackson, 1992). In the early days of mechanism design, a common trick was to append

a ‘name the largest integer game’ to the mechanism. Payoffs could then be written as fol-

lows: ‘If the equilibrium messages are sent, apply the desired outcome function.’ If a player

sends a nonequilibrium message, then an enormous payoff goes to the agent who lists the

largest integer – in a ‘name the largest integer game’. Since the largest integer game has no

equilibrium (it is unbounded), appending it to the mechanism wipes out all undesirable

equilibria.9 Mechanisms that include undominated strategies are less predictable. They

contain no guarantee that the agents will avoid playing ‘name the largest integer’ games.

A related and separate question concerns the beliefs that agents have about the types

of other agents. Everything discussed so far assumes common knowledge of beliefs. But

what if the agents’ higher-order beliefs are not common knowledge, which they probably

are not? Bergemann and Morris (2005) refer to mechanisms that can implement a social

choice correspondence with relaxed assumptions about higher-order beliefs as robust.10

In brief, robust implementation is only possible in what they call separable environ-

ments. These environments limit the interdependence of preferences, that is, an agent can

only care about its own outcome and a global variable.

4. A complexity perspective

Now that I have provided skeletal descriptions of both complex systems and mechanism

design, I present an argument that the latter provides a useful framework for thinking
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about complexity in economic and political systems. In what follows, I introduce core

features of complex systems and interpret them through a mechanism-design perspec-

tive. I do so by reconsidering the distinction between realization and implementation

in five ways. I first consider classes of outcomes. Systems need not attain equilibria.

They can also cycle, be chaotic, or produce complexity. I then consider behavioral diver-

sity. What if agents differ in the rules they follow? Third, I discuss the effects of adding

learning and adaptation of behavioral rules. Fourth, I introduce networks (that is, agents

situated in space) and, finally, I incorporate the idea of institutional ensembles.

After this reconsideration of implementation and realization, I then embed individual

mechanisms within a larger context. This construction builds on earlier work on ensem-

bles of games (Bednar and Page, 2008). In that research, we find that multiple games can

produce emergent cultures – similar behavioral patterns across games. Here, I relate the

idea of a cognitive culture back to the issue of common knowledge of priors discussed by

Bergemann and Morris (2005).

4.1. Realizing more than equilibria

Recall the distinction between implementation and realization. Implementation assumes

that agents optimize, while realization assumes that agents follow rules. Both approaches

restrict attention to equilibria. Implemented equilibria are also Nash equilibria, but rea-

lized equilibria need not be. They need only be fixed points of the behavioral rules. Eco-

nomic models, for the most part, restrict attention to equilibria. Yet, as mentioned,

systems of interacting agents can also produce patterns, randomness, or complexity

(Wolfram, 2002).

In order for a mechanism to produce these other types of outcome, it must be

dynamic. A single-shot game cannot produce a cycle, a random sequence of outcomes,

or complexity. Therefore, to adopt a complexity perspective, we have to abandon the

idea of implementing equilibria and instead adopt a view that agents follow rules – these

rules could be optimal given other agents’ actions, but they must be rules. A mechanism

would then produce a sequence of outcomes.

As a first step, assume that the rules that the agents follow are fixed. These could be

selections from best-response correspondences, in which agents choose a best response

to the existing set of messages, or they could be idiosyncratic. Choose a random set of

initial messages and then allow the process to iterate in discrete time steps. In some

cases, the result will be an equilibrium. If the process does reach an equilibrium, then,

following Epstein (2005), we can say that the equilibrium has been generated. Note that

generativeness is stronger than existence. An equilibrium can exist, but be difficult or

impossible to generate.

In one-shot settings with high stakes, we may have no better approach than to assume

something close to optimizing behavior on the part of agents and to assume that the

agents believe that the actions of others will be at or near an equilibrium (Camerer,

2003). Such might be the case on bidding on an oil lease or a military contract. In settings

with lower stakes, agents are more likely to follow rules. Those rules may not be optimal.

They could be habitual. They could be ‘rational’ given an incorrect model. They could be

rules that suffer from a behavioral bias. Regardless, we can probably assume that
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whatever rules are in play have survived some sort of winnowing process, and that, on

average, they function reasonably well (Gigerenzer and Selten, 2001).

Online auction mechanisms such as EBay provide a nice example of low-stake, one-

shot interactions. Some bidders ‘nibble’. They raise their bids by small increments. Their

primary goal is to win, but they do not want to pay too much. Other bidders swoop in.

They submit electronic bids that enter at the last instant at a fixed price. These bidders’

primary concern is finding great deals (Mittermeier, 2010). From a complex systems per-

spective, we can think of the community of EBay bidders as an ecology of strategies. The

outcomes produced by this ecology may not be exactly what mechanism design would

predict, but the theory probably would not miss by far. That is because we can show the-

oretically that auctions are quite robust to small behavioral errors. Other research, such

as Gode and Sunder’s model of zero-intelligence traders (1993), demonstrates the

robustness of exchange market mechanisms to nonrational behaviors.

None of this is to deny that the equilibria are not valuable as benchmarks. But one way

to evaluate mechanisms might be to consider a variety of initial conditions and a variety

of possible behavioral rules and to examine what arises given those combinations. If

under a wide variety of assumptions the system goes to equilibrium, then we can have

some measure of confidence that comparing equilibria is sensible. If, though, it is

extremely difficult to produce equilibria, then equilibria may not be the appropriate

solution concept.

4.2. Diverse rules

I next consider the inclusion of diversity. Behavioral diversity often requires that some

agents behave suboptimally – if we were all behaving differently, we might not all be

able to be optimizing. If, and this is often the case, optimal behavior is unique, then

to be different implies not taking the optimal action.11 In complex systems models, the

standard assumption is that agents follow rules, and rather simple ones at that. There

exist an enormous number of plausible behavioral rules, and, on top of that, a variety

of ways to learn how to adjust those rules.

Just because diversity exists does not imply that it has a meaningful influence on out-

comes. Mistakes could cancel out due to large numbers of agents. In addition, as men-

tioned above, exchange markets do in fact prove robust to errors. In more elaborate

mechanisms, diversity does matter. The behavior of a representative agent will not

align with what occurs when diverse agents interact, as Kirman (1992) shows in his

analysis of spatial markets.

One way to investigate the effects of diversity involves revisiting the insights from the

robust implementation literature relating to separability. If an agent does not interact in

meaningful ways with the actions of the other agents, then that agent has a clear path of

action – what game theorists call a ‘dominant strategy’. The lack of common knowledge

in beliefs about types does not have any effect. In a rule-based complex system, indi-

viduals do not necessarily optimize with respect to the actions of the other agents, but

they do follow coherent rules that tend to produce good payoffs. If the actions are

separable, then variations in actions by other agents should not change the behavior

specified by a good rule any more than it changes the behavior specified by optimizing
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behavior. Thus, a central-limit-type logic applies, and variation will just be so much

noise about the mean.

If, instead, agents’ choices interact in meaningful ways, then diversity can influence

results. To put some flesh on this, consider the race-to-the-bottom game (Nagel, 1995).

In this game, each individual chooses a real number in the interval [0,100]. The winner is

the person who guesses the number closest to two-thirds of the mean guess. The unique

Nash equilibrium to this game is to bid zero, but in experiments few people bid that

amount in their first play of the game.

To see the effects of diverse rules of behavior, imagine that this game is played over and

over with 10 agents. Consider first a case in which every agent initially guesses 10 and

thereafter guesses approximately two-thirds of the mean in the previous period. The result

will be that the means converge to zero according to the following continuing sequence:

10;
20

3
;
40

9
;
80

27

Now, replace one of the 10 players with someone who always bids 70 and replace

another player with someone who always bids zero. A quick calculation shows that the

result will be a constant mean of 15, a very different outcome than when there was no

diversity. In this case, the payoff to an action depends critically on the actions of other

agents – so diversity matters.

4.3. Learning and adaptation

The examples of behavior rules described so far have all been fixed. It is also possible

that agents can learn new rules. That learning could be individualized or social (Vriend,

2000). So, for example, an agent could learn which percentage to shade her bid. Now, of

course, the learning rule will itself be fixed, so at the deepest level the agents follow fixed

rules (Miller and Page, 2008). Therefore, I will distinguish between direct rules (rules

that describe actions) and meta-rules (rules that modify direct rules). People possess both

types of rules. We follow direct rules when we take actions. We employ meta-rules when

we decide what rules to use to make actions. Direct rules capture actions. Meta-rules cap-

ture learning and adaptation.

If we plop learning agents into a mechanism, we create an alternative criteria for com-

paring mechanisms. One mechanism might be better than another if the former’s good

outcome is more easily learned. An explicit example helps to clarify this point. One

of the most famous results in mechanism design is the Revenue Equivalence Theorem

(Myerson, 1992). The theorem states that (given certain assumptions) any auction

mechanism will yield the same expected revenue. Suppose that we want to compare a

sealed-bid, first-price auction (the good goes to the highest bidder at the highest bid

price) to a second-price auction (the good goes to the highest bidder at the second highest

bid). Suppose that our social choice correspondence, our goal, calls for the good to go to

the buyer with the highest valuation and to yield the most revenue to the seller. By the

Revenue Equivalence Theorem both auctions are identical in expectation.

To decide between the two, we then might look at the dimension of the message

space. Here again, we have no way to adjudicate between the two mechanisms, as they
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both use only a single dimension. We might next take the Mount-Reiter approach. In the

first-price auction, individuals must do sophisticated calculations based on their beliefs

about the distribution of the bid values of the other agents. In the second-price auction,

individuals need only bid their true values. So, here, all signs would point to the second-

price auction as being simpler. However, as Andreoni and Miller (1995) find in a model

using artificial adaptive agents, the second-price auction creates a starker learning envi-

ronment. Given a fixed set of bids by other players, the payoff function for the other

agent has large flat regions. Thus, ease of learnability of an equilibrium is not equivalent

to the ease of computability of an equilibrium.

4.4. Networks

Standard mechanism-design models assume that all interactions take place at a single

location in an instant in time. That assumption makes sense in many contexts. When you

buy a book on the Internet or participate in an online auction, your physical location does

not matter. In other contexts, physical or virtual space may play a significant role in how

events transpire (Barabási, 2002; Jackson, 2008), even permitting cooperation where it

did not exist previously (Nowak and May, 1993).

To see the importance of network structures on outcomes, consider a coordination game

in which agents want to match the actions of other agents. Assume that there are only two

possible actions A and B. Consider the following behavioral rule: in the first period, play

randomly, then take whichever action was more prevalent in the previous period. If all

agents interact in a single location and if the number of agents is odd, then this rule will

produce a random collection of A’s and B’s in the first period and then either all A’s or all

B’s in the second period, depending on which was more prevalent initially.

We can add a network structure to this interaction by placing the agents in a line and

assuming that an agent can only see the actions of neighbors within some distance k in

each direction. If we assume the same behavioral rule, with the caveat that the agents

now only see the actions of 2 k neighbors plus their own action, then we no longer need

get full coordination. This system most often produces clusters of A’s and B’s. Glaser et

al. (1996) construct a variant of this model and interpret A as criminal behavior and B as

law-abiding behavior. They then argue that the clusters of criminal behavior produced by

the model may help explain local variations in crime.

The addition of networks to a mechanism means that agents’ behavioral rules do not

apply to the full vector of messages of the other agents. Instead, they only depend on the

actions of the agents’ neighbors. As seen in the example of the coordination game, the

restriction to local interactions can result in multiple equilibria, and, as a consequence,

less predictable outcomes and the potential inefficacy of some policy prescriptions. For

example, Brock and Durlauf (2002) construct a model of social influence that produces

two stable equilibria, one of which can be interpreted as a poverty trap.12

4.5. Ensembles of mechanisms, culture, and priors

For my last complexification of mechanism design, I consider multiple mechanisms.

This extension aligns with one of the core principles of complexity research: that
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everything is interconnected. Complex adaptive-systems models often include disease,

war, politics, and economic activity simultaneously (Epstein and Axtell, 1996). Though

this makes the models harder to interpret, it captures unanticipated interactions between

systems. This idea from complex systems has implications for mechanism design in that

it suggests that the behavior that emerges in an institutional setting may depend on how

that institution is situated. Put differently, complexity theory suggests that by thinking of

mechanisms in isolation we are making a substantial error. Behaviors may depend sig-

nificantly on the entire collection of institutions facing an agent.

The idea of systems-level effects is central in economics. A seminal contribution of

neoclassical economics was the development of general equilibrium theory (Debreu,

1959). General equilibrium theory takes into account the full effect of changes in an

economy. If a technological breakthrough lowers the labor required to produce a unit

of a commodity, then partial equilibrium analysis tells us that the price of that commod-

ity will fall and the amount sold will rise. General equilibrium theory tells us that the

prices of all other goods as well as the amounts sold will also change, as will the price

of labor, as demand for labor has fallen. These secondary effects can ripple through the

economy and aggregate into something larger.

These linkages across systems can be substantial. In Plagues and Peoples, McNeil

(1976) shows that diseases such as smallpox played as large a role in armed conflict

as military might. More recently, Diamond (1997) has sketched out how disparities in

wealth and power also depend on disease, climate, and even the sizes of seeds. A com-

plex systems approach to institutions offers the potential for similar types of insights

by allowing for the consideration of ensembles of institutions (Bednar and Page,

2008). At present, the results do not exhibit the closed-form grandeur of general equi-

librium theory (nor may they ever). Nevertheless, the idea of ensembles of institutions

merits discussion and analysis.

Consider an individual in a developed economy. This individual interacts in multiple

institutional settings. In the language of mechanism design, she sends messages and

receives payoffs in more than one mechanism. These mechanisms may be public, such

as markets or online auctions, or they may be within the boundaries of a firm or part-

nership. We can call the set of all mechanisms that an individual interacts within her

ensemble. Modeling this individual not as an optimizer, but as a collection of beha-

vioral rules highlights the inefficiency of an individual developing distinct rules for

each setting. If the reasons that people follow rules rather than optimize relates to the

costs of computation, as Samuelson (2001) assumes, then agents should choose an

ensemble-relevant set of behaviors.

How an agent acts in one setting can often be influenced by the other mechanisms in

her ensemble. Studies of individual mechanisms preclude ensemble-level effects on cog-

nitive processes. In a world with optimizing agents, we need not worry about cognitive

spillovers. Everyone is optimizing. If we instead assume that people follow rules, then

we might naturally assume that these rules would flow across contexts. This might occur

directly through case-based applications of rules across domains (Gilboa and Schmei-

dler, 1995) or it might occur indirectly through searches for new rules that combine parts

of existing rules. In experimental work, Bednar et al. (2011) show that individuals who

learn to alternate actions in one game often transfer that heuristic to other games.
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Ensemble dependency provides an entry into the study of cultural behavior. Loosely

defined, cultural behaviors can be thought of as behaviors shared by a community of

interacting individuals that exhibits some consistency across domains. Thus, cultures can

be categorized as trusting, individualistic, risk taking, and so on (Inglehart, 1997). Note

the resonance between ensemble effects (Bednar and Page, 2008; Samuelson, 2001)

and the cost-of-computation approach of Mount and Reiter (2002). Both assume that

thinking takes resources. Mount and Reiter adhere to the optimizing paradigm and seek

out mechanisms that balance message-space size and computation. They include the

costs of communicating and thinking, but they do not sacrifice any deviations from

allocative optimality for potentially large decreases in computation. Samuelson

(2001) and Bednar and Page (2008) are willing to trade off a little allocative optimality

in exchange for less cognitive effort.

5. Conclusion

In this article, I have provided an introduction to some basic concepts from complex sys-

tems and an overview of mechanism design. I have then discussed how a complexity per-

spective might move mechanism design into new and interesting directions. The first

step in that process may be a ‘doozy’. It requires abandoning two fundamental assump-

tions from mechanism design. First, agents must be assumed to adapt rules and not to

optimize. Second, systems must be allowed to do something other than attain equilibria.

By making these two changes, economists can include more interdependencies. The

emphasis on implementation and, recently, on robust implementation has concentrated

attention on separable environments. These are precisely the environments least likely

to produce complex outcomes. The two aforementioned changes (that is, allowing adap-

tive rules and considering broader classes of outcomes) would have the effect of raising

the proverbial streetlight under which economists spend their time. The higher light may

not shine as brightly, but it will cover more ground.

These emendations to mechanism design do not require abandonment of its core prin-

ciples and assumptions. If anything, the adoption of rule-based behavior can be seen as a

return to the origins of mechanism design. Prior to the rise of game theory, most econ-

omists assumed that people follow rules. If the agents apply meta-rules that allow them

to adapt better rules, then the assumption of rule-based behavior morphs into learning

agents, which lies on the frontier of economics. I would argue that learning models from

behavioral economics have more in common with rule-based models than they do with

optimization models of behavior.

The second change requires a willingness to consider outcome phenomena other than

equilibria. Here again, the change to standard practice will be minor. Many economic mod-

els, including learning models and dynamic, stochastic general equilibrium models already

consider time to equilibrium. In addition, Markov-perfect equilibria allow for equilibrium

distributions as opposed to equilibrium points (Young, 2001). Modern economics admits

outcome phenomena other than equilibria. Economic models produce cycles (of the entire

economy and of fashions) and they produce bubbles and crashes. Mechanism design,

though, has not been as expansive in the outcomes it considers. I believe this to be primar-

ily because of the interests of researchers and not the limits of the approach.
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The complexity-based mechanism design that I advocate would rely on the

Mount-Reiter diagram as a point of departure, but rather than invoking the Revelation

Principle, it would emphasize real mechanisms – the message spaces and the outcome

functions. It would take seriously how agents communicate with one another and how

those communications get translated into outcomes. I do not advocate abandoning the

Revelation Principle. Direct mechanisms are useful as benchmarks, but they should not

be an end in themselves. More emphasis should be placed on how the individual beha-

vior aggregates. I am not advocating a return to adjustment processes: agents should be

adaptive. Their response functions should change in response to the reactions of others.

In an adjustment process, the rules that the agents follow spring from the minds of econ-

omists. In what I propose, those rules would emerge, not be built into the model.

If we follow such a path, the important earlier work on message-space dimensions and

computational requirements could then be extended to account for the complexity of the

learning environment (Mount and Reiter, 2002). That complexity would depend on

dimensionality and computational requirements to be sure, and it would also include

interdependencies between actions and the network structure. In principle, new measures

of the complexity of mechanisms might be constructed that are better suited to the issues

that concern economists.

The positive application of a complexity-based mechanism design would be straight-

forward. Given an environment, two mechanisms (the behaviors, the messages, the out-

come function, and the outcomes themselves) can be compared by the paths of outcomes

that they produce. These paths can be evaluated by multiple criteria, including average

payoff, equality, and robustness. By ‘robustness’, I do not mean robustness to different

prior beliefs, as mentioned earlier; I mean the robustness of the outcomes to the internal

dynamics of the agents and to changes in the environment (Bednar, 2009). One need only

consider the magnitude of the 2008 bailout of the Troubled Asset Relief Program in the

USA to recognize the importance of including the robustness of the outcomes that a

mechanism produces.

The normative application of a complexity-based approach would be more challenging.

Given rule-based behavior, the social choice correspondence F needs to be reformulated.

Currently, F describes the set of desirable equilibrium outcomes given the environment.

However, F might describe a set acceptable outcomes or might characterize trajectories

that the mechanism would produce. In the later case, the normative concern would be

whether a mechanism produces paths of outcomes that lie within that set of trajectories

under a broad class of assumptions about behavior.

A final (and speculative) effect of a complexity perspective also relates to normative

goals. A case could be made that the current emphasis on efficiency is an artifact of an

earlier, mechanistic view of the economy. Just as now we compute the static efficiency

of mechanisms, we might one day compute their dynamic complexity. The complexity

of the world in which we live is mainly of our own creation. We will not understand that

complexity by pulling out the parts and examining them one by one. That is a necessary

task, but not a sufficient one. If we want to understand not just outcomes, but emergent

phenomena such as culture and large events, we will need more expansive models of

institutions. We have to ask ourselves: How much complexity do we want? Clearly,

we do not want to rid economic systems of all complexity. Systems that continue to
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churn, including ecosystems and economies, are more robust. This is partly because they

maintain sufficient diversity to continue to explore their surroundings (Page, 2010). Yet,

it is also clear that we would like some bound on complexity, lest we produce unpredict-

able, fragile systems and frequent, large negative events (Crutchfield, 2009). Thus, to

marry the insights of Bednar (2009) and Axelrod and Cohen (2000), our goal should

be to develop principles of design that harness complexity. To help us on that path,

we may have no better starting-off point than a renewed engagement with the deep and

varied contributions of mechanism design.

Notes

The author would like to thank the NSF, the Army Office of Research, and the Air Force for

funding that supported research related to this project. An earlier draft of this article was pre-

sented at a conference on complexity in New Orleans sponsored by this journal. This version

includes corrections, improvements, and changes in direction and focus suggested by partici-

pants at that conference.

1. For example, the 2002 Congressional Budget Office projections anticipated a government

surplus exceeding US$100 billion in 2009. Fiscal year 2009 produced a deficit in excess of

US$1.4 trillion (Congressional Budget Office, 2002).

2. Advocates of complexity thinking would argue that this adherence to equilibrium thinking results

in unexpected large events, such as the collapse of financial markets. Such large events become

likely when we allow a system to become complex (Crutchfield, 2009; Tesfatsion, 1997, 2006).

3. See Durlauf (2012) in this same issue on this point.

4. In Page (2008), I provide an elaboration of the differences between the two concepts.

5. A variant of Figure 1 can also be found in Iwasa et al. (1987).

6. Those conditions limit either the diversity of the agents or the interdependencies between

them, and thus rule out much complexity.

7. The proof of the Revelation Principle is straightforward. If the response function g maps a per-

son’s type into some message m, and h determines a payoff as a function of m, we can collapse

h and g into a single function based on the agent’s type.

8. There exists a separate literature on the computation of equilibria by a central authority. See,

for example, Scarf (1977).

9. Not all mechanisms that rely on undominated strategies include name-the-largest-integer

games. In some cases, such as the Groves-Ledyard solution to the free-rider problem (Groves

and Ledyard, 1976), the undominated messages went unrecognized for decades (Page and

Tassier, 2010).

10. Bergemann and Morris (2005) distinguish between full and partial robust implementation.

The former requires that all equilibria lie in the correspondence. The latter requires that there

exists an equilibrium consistent with the social choice correspondence.

11. Many games have multiple best responses, and, in particular, mixed-strategy equilibria allow

for diverse optimal behaviors.

12. See Durlauf (2012) in this volume for an elaboration of these ideas.
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